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Abstract— Reinforcement learning (RL) algorithms face sig-
nificant challenges when dealing with long-horizon robot ma-
nipulation tasks in real-world environments due to sample
inefficiency and safety issues. To overcome these challenges,
we propose a novel framework, SEED, which leverages two
approaches: reinforcement learning from human feedback
(RLHF) and primitive skill-based reinforcement learning. Both
approaches are particularly effective in addressing sparse re-
ward issues and the complexities involved in long-horizon tasks.
By combining them, SEED reduces the human effort required in
RLHF and increases safety in training robot manipulation with
RL in real-world settings. Additionally, parameterized skills
provide a clear view of the agent’s high-level intentions, allowing
humans to evaluate skill choices before they are executed.
This feature makes the training process even safer and more
efficient. To evaluate the performance of SEED, we conducted
extensive experiments on five manipulation tasks with varying
levels of complexity. Our results show that SEED significantly
outperforms state-of-the-art RL algorithms in sample efficiency
and safety. In addition, SEED also exhibits a substantial
reduction of human effort compared to other RLHF methods.
Further details and video results can be found at https:
//seediros23.github.io/.

I. INTRODUCTION

Long-horizon manipulation tasks pose a significant chal-
lenge for robot learning due to the limitations of reinforce-
ment learning (RL) [1] in physical, real-world environments.
While RL has shown remarkable success in simulation
environments, its application to real-world robotics is ham-
pered by sample inefficiency and safety concerns, as it is
impractical to allow robots to engage in unbridled trial-
and-error interactions with the physical environment for
extended periods. Sparse reward signals in long-horizon tasks
exacerbate these difficulties. In response, recent research has
proposed two promising approaches to enhance RL in real-
world robot applications: leveraging human evaluation and
augmenting robots with primitive skills. Here, we present
a novel framework that complements these approaches to
tackle long-horizon manipulation tasks in the physical world.

First, different types of human guidance [2] are often intro-
duced to speed up learning and reduce risks. This is known
as reinforcement learning from human feedback (RLHF). For
instance, humans can provide real-time evaluative feedback
(“good”, “neutral”, or “bad”) [3], [4] to indicate how de-
sirable the observed behavior is. Evaluation is an attractive
approach for robot learning because it is relatively easy to
collect. For physical robot learning tasks, it may be infeasible
for a human trainer to define a reward function (for RL) or
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Fig. 1. An overview of skill-based evaluative feedback (SEED). Human
trainers provide evaluative feedback on a robotic learning agent’s choice of
primitive skills and skill parameters.

provide a demonstration (as in imitation learning, IL) due
to safety concerns or limited human expertise. Nevertheless,
similarly to how sports coaches provide valuable feedback
for professional athletes, it is still often possible for humans
to guide the learning agent through useful evaluations. This
underscores the potential utility of non-expert feedback in
skill acquisition and mastery. Even in cases where RL or IL
approaches are viable, evaluation can be used to increase the
speed of task learning.

Another such approach is the augmentation of robots with
a pre-defined library [5] of parameterized primitive skills,
such as Pick(obj-A) or MoveTo(x,y). Although deep
RL has the potential to learn a policy with low-level, high-
dimensional action space like joint commands, augmenting
robots with skills has emerged as a promising approach to
improve the efficiency and scalability of robot learning in
physical environments.

To overcome the challenges faced by robot learning in
real-world manipulation tasks, we propose a novel frame-
work, SEED (Skill-based Evaluative fEeDback), as shown
in Fig. 1, which synergistically integrates two approaches:
learning from human evaluative feedback and primitive
skill-based motion control. The combination of primitive
skills and evaluative feedback is highly advantageous for
RL agents for several reasons. Firstly, by breaking down
complex, long-horizon tasks into a sequence of primitive
skills, evaluative feedback can provide dense training signals,
which makes long-horizon tasks with sparse rewards more
tractable. Secondly, evaluating low-level robotic actions can
be a time and resource-intensive task for humans [6], but
evaluating primitive skills require significantly less effort.
Thirdly, primitive skills are intuitive and can reveal the high-
level intentions of the robot, allowing humans to evaluate
skill choices before they are executed. This “evaluation



without execution” design is difficult for robots that only
have low-level actions. The use of negative feedback from
humans to prevent the robot from executing the action can
ensure safety during RL training in real-world settings.

We conducted extensive experiments on five manipula-
tion tasks of varying complexities in both the Robosuite
[7] simulator and in the real world. Our empirical results
demonstrate that SEED significantly outperforms alternative
approaches in terms of sample efficiency, safety, and human
effort, particularly in long-horizon tasks with sparse rewards.

Our experiments also highlight emerging capabilities of
SEED, including zero-shot generalization ability in unseen
scene configurations through reward composition. Addition-
ally, SEED outperforms imitation learning-based methods
when suboptimal demonstrations or multimodal demonstra-
tions are present.

II. RELATED WORK

Learning from human evaluative feedback for tasks
with sparse rewards. In this framework, human trainers
monitor the learning process of an agent and provide a
learning signal to indicate whether the observed behavior is
desirable, in the form of continuous scalar signals [8], binary
values [9], [10], or trajectory-level critiques [11] through
different means of providing feedback [12], [13], [14], [10],
[15]. The agent then learns a policy to maximize positive
feedback from humans. Human evaluation is often inter-
preted as value function [8], [16], or advantage function [17],
[18]. Human evaluation can be naturally combined with
environment rewards so the agent learns simultaneously from
both sources [19], [20], [21]. Applying evaluative feedback-
based RL to physical robots is challenging: [6], [22], [23],
[24] shows that this is feasible, but without primitive skills,
we are limited to shorter-horizon tasks such as reaching and
placing, or tasks with low-dimensional state and action space.

Leveraging primitive skills for long-horizon robot
learning tasks. A plethora of recent research has explored
leveraging parameterized skills to solve long-horizon robot
manipulation tasks [25], [5], [26], [27], [28], [29], [30], [31],
[32], [33]. Traditional search-based algorithms, such as task
and motion planning (TAMP) [34], [35], [36], [37], have
been widely utilized for effective multi-step parameterized
skill optimization. However, these methods heavily depend
on analytically-defined components, such as preimage func-
tions and environment kinematics models. Recent learning-
based approaches have been developed, leveraging deep
neural networks to learn to solve long-horizon tasks from
either human demonstrations [27], [28] or task rewards [29],
[31], [32]. Although learning-based methods provide greater
flexibility in solving complex tasks, they often require a sig-
nificant number of demonstrations and well-defined reward
functions for learning primitive skills which can be both
costly and challenging to scale up.

Our work is closely related to the approach introduced in
MAPLE [5], which aims to enhance the sample efficiency of
learning manipulation policies by augmenting deep RL with
parameterized skills. However, MAPLE still faces limitations

that hinder its ability to generalize to novel scenes and
imposes safety risks in deployment on real-world robots.
In contrast, SEED, addresses these issues by leveraging
simple yet effective evaluative feedback as reward signals.
Our approach not only significantly improves the sample
efficiency of the model but also ensures the training process
is safe and user-friendly in novel environments.

III. METHOD

Our method is designed to overcome challenges in learn-
ing long-horizon robot manipulation with deep RL. By
leveraging RLHF and parameterized skills, we propose a
novel framework — SEED, to improve sample efficiency,
reduce human effort, and ensure safety in RL tasks with
physical robots.

A. Parameterized Skills

We represent the robot decision-making problem
as a Markov decision process denoted by the tuple
⟨S,A, P,R, γ⟩, representing the state space, the action
space, the transition function, the reward function, and the
discount factor. A policy π is a mapping from observation
state space S to a probability distribution over the robot
action space A.

However, naively learning RL robot agents with low-
level joint control or operational space control is impractical
in real world due to the sample inefficiency and safety
concerns. Since skill-augmented RL has shown promising
results in solving long-horizon tasks with better sample
efficiency, we follow recent works in learning RL agents
with parameterized skills [5] and augment our action space
A of the manipulation agent with the following primitive
skills (a) and their parameters (x):

• Reaching: Moves end-effector to location (x, y, z).
• Picking: Picks up an object at location (x, y, z).
• Placing: Places an object at location (x, y, z).
• Pushing: Reaches to starting location (x, y, z) and

pushes end-effector in x or y direction by δ.
• Gripper Release: Opens gripper (has no parameters).

By leveraging the parameterized skills, the control policy π is
able to focus on learning skill and parameter selection, which
bypasses the burden of learning low-level motor control and
improves learning efficiency.

Since our decision-making algorithm does not require
knowledge of the primitive skills’ underlying control mecha-
nism, the skills can be implemented in any method as long as
they are robust and adaptive to various situations encountered
during the task. In our implementation, each of the skills
is predefined by closed-loop controllers that move the end
effector in straight-line paths between a series of waypoints.
Robosuite’s built-in controller and Deoxys’s API for Franka
Emika Panda arm controller [38] are used for the simulation
and real-world experiments respectively. Operational space
control (OSC) [39] is used for both scenarios.
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Fig. 2. Neural network architecture for SEED. The network consists of a critic network that predicts human evaluative feedback, a skill actor network
that selects primitive skill, and a parameter actor network that selects parameters for the selected skill. Each skill has a unique parameter policy. The
skill policy outputs the ID of the selected skill, which is used to invoke the parameter policy corresponding to the selected skill. Outputs of the skill and
parameter networks are used by human trainers to provide evaluative feedback. This evaluation signal, combined with the skill and parameter selection, is
used to train the human critic.

B. Skill-based evaluative feedback.

Leveraging human evaluative feedback can further im-
prove sample efficiency and safety in long-horizon robot
manipulation tasks. TAMER [8], [16] is a widely used frame-
work for RL from evaluative feedback. Instead of using the
environment reward, human trainers provide a scalar signal
to indicate whether the observed decision is desirable or not.
We denote this signal as H(s, a,x) ∈ {−1, 0,+1}, where
s is the state vector, a is the one-hot skill selection vector,
and x is the skill parameter vector. Since part of the action
space (skill parameters) is continuous, we use Soft Actor-
Critic (SAC) [40] as the RL backbone. We use MAPLE [5] as
the framework for simultaneously learning a skill-policy that
selects a primitive skill, and unique parameter policies for
each skill to select the skill parameters. The key difference
is that MAPLE is purely based on RL, but SEED’s critic is
trained using supervised learning where the objective is to
predict human evaluative feedback.

The model architecture is shown in Fig. 2. We can estimate
human evaluative feedback Ĥ(s, a,x) using a critic head in
SAC. We assume θ, ϕ, ψ, parameterize the critic, the skill
selection actor network, and the parameter selection actor
network, respectively. The learning objective for the critic is
an L2 loss:

L(θ) = E(s,a,x,H)∼D∥Ĥθ(s, a,x)−H(s, a,x)∥22 (1)

Similar to MAPLE, we have separate loss functions for the
skill actor and the parameter actor:

L(ϕ) = Ea∼πϕ

[
αϕ log(πϕ(a|s))− Ex∼πψĤθ(s, a,x)

]
(2)

L(ψ) = Ea∼πϕEx∼πψ

[
αψ log(πψ(x|s, a))− Ĥθ(s, a,x)

]
,

(3)
αϕ, αψ are the temperature parameter for the maximum
entropy objective in SAC [40], [41]. The actors update the
policy distribution in the direction suggested by the critic.

The agent learns a policy to maximize expected feedback
from humans.

C. Balanced replay buffer.
During the initial stages of training with human feedback,

the policy network mostly proposes suboptimal actions. As
a result, the model’s replay buffer will predominantly be
filled with actions labeled with negative human feedback.
Following prior works on resampling methods for imbal-
anced learning [42], [43], we sample an equal number of
“good” and “bad” samples in each batch during off-policy
learning stages, promoting faster convergence of the critic
and the actor networks. In the absence of positive samples
in the early training stage, we resort to the standard batch
sampling approach using negative samples. This method can
be considered to be a special case of prioritized replay buffer
[44], in which we prioritize sampling transitions with positive
human feedback.

D. Facilitating learning with affordances.
MAPLE has shown that adding an affordance score as a

small auxiliary reward can facilitate exploration and learning
[5], e.g., a pushing skill is only appropriate in the vicinity
of pushable objects, and the agent should be penalized
with a negative reward for using the skill inappropriately.
MAPLE utilizes well-crafted, skill-specific affordance scores
that scale with distance from keypoints to encourage the
agent to specify position parameters near important sites
for each primitive. To accelerate learning in real robot
experiments, we adopt a simplified version of MAPLE’s
affordance score where we add a small penalty of −0.1 when
the skill parameter is not near any task-relevant objects. This
affordance reward design is more general and involves less
human engineering effort.

E. Evaluation without execution.
Primitive skills and their parameters like those defined in

MAPLE [5] have clear semantics and are intuitive to humans.



Fig. 3. SEED user interface. The red dot and line show (x, y, z) positions
of the chosen skill parameter projected on the 2D camera view. Green bar
shows the gripper orientation. For example, in the top right image, the next
subgoal is to pick up the broom. Human gives negative feedback because
the proposed parameters are too far away from the broom handle.

Therefore humans can evaluate robot’s selection of skills and
parameters even before the robots execute the action.

The interface for evaluation without execution is shown
in Fig. 3. During the training process, a depiction of the
robot’s workspace, marked with annotations of the agent’s
skill and parameter selections, is presented to a human
evaluator. During the initial stage of training, the human
trainer evaluates each action as “good” or “bad” based
solely on the visual representation of the robots’ skills and
parameters. Only when the human is confident of the robot’s
ability to make good decisions, will the robot be allowed to
execute the action, making training more safe and efficient.
The full pipeline of SEED is shown in Algorithm 1.

IV. EXPERIMENTS SETUPS

A. Baselines

To understand the effect of human evaluation and to
compare skill-based learning with low-level action-based
learning, we compare SEED with the following baselines:

• SAC [40] is the standard actor-critic algorithm that opti-
mizes the stochastic policy with entropy regularization.

• TAMER [8] is an existing framework for RLHF. To
adapt TAMER to continuous actions space, we used
TAMER+SAC, which replaces the standard critic with
a human feedback critic which estimates a scalar signal
from human trainers. Human trainer evaluates every
low-level step, or a single command to the OSC con-
troller. The agent is trained on dense human rewards
and sparse environment rewards.

Algorithm 1 Skill-based Evaluative Feedback (SEED)
1: Initialize network weights for skill policy πϕ(a|s), pa-

rameter policy πψ(x|s, a), and human feedback critic
network Hθ(s, a,x); initialize replay buffer D

2: for episode = 1, . . . , N do
3: Initialize t← 0
4: while episode not terminated do
5: Sample skill at = πϕ(·|st)
6: Sample skill parameter xt = πψ(·|st, at)
7: Query human for evaluative feedback Ht(st, at,xt)
8: Store transition (st, at, xt, Ht) in D
9: if Ht(st, at,xt) = +1 then

10: Execute (at,xt)
11: end if
12: Sample a minibatch of (st, at, xt, Ht) from D to

perform gradient updates on θ, ϕ, ψ based on Eqs 1,
2, and 3.

13: t← t+ 1
14: end while
15: end for

• MAPLE [5] is an existing framework for RL with be-
havior primitives. Compared to SAC, MAPLE replaces
the standard actor with a hierarchical policy that has a
high-level policy that determines the skill selection, and
a low-level parameter policy that determines the param-
eter selection given the primitive skill. This algorithm
is trained on sparse environment rewards and does not
involve human evaluations.

• MAPLE-aff is a variant of MAPLE that leverage affor-
dance score as a dense reward signal [5]. We intend to
show that human feedback is a more powerful learning
signal than this hand-designed affordance reward. This
algorithm has no human evaluations.

TAMER and MAPLE can be viewed as ablated versions of
SEED. The former does not have primitive skills and the lat-
ter does not have human feedback. Training hyperparameters
are shown in Table I. Train frequency refers to the number of
environment steps between each gradient descent, in which
we take gradient steps times of gradient updates.

Synthetic human feedback in simulation. We utilized
synthetic feedback in simulated environments instead of
real human feedback as in real-world environments. Syn-
thetic feedback assumes idealized human feedback behav-
iors, which allows us to focus on the learning algorithms
themselves and perform more extensive and controlled ex-
periments. For SEED, we utilize predefined heuristics (i.e.,
skill-specific affordance reward) to generate binary human
feedback for each high-level step.

In contrast, TAMER was trained with an oracle which
is a fully trained SAC agent, since heuristics for low-level
actions are difficult to specify. Specifically, the TAMER
agent chooses an action a in state s, and the oracle chooses an
action a∗. The oracle SAC computes the Q values for these
actions: Q(s, a) and Q(s, a∗). If the learning agent chooses



an action that has a Q-value close enough to Q(s, a∗),
it is a good action and the agent should receive positive
feedback. Otherwise, it should receive negative feedback:
H(s, a) = +1, if Q(s, a) ≥ αQ(s, a∗) and − 1 otherwise.
The α value is initially set as 0.999, and it increases over
time to encourage the agent to learn to choose better actions
during training.

Human feedback in real world. For each of the three
tasks, a single human trains the agent twice by providing
evaluation signals via a keyboard key press.

B. Long-horizon manipulation tasks

The robot we use is a Franka Emika robot arm. The
simulation tasks are implemented in the Robosuite [7]. We
evaluate SEED and baseline algorithms in simulation and in
the real world, in the following long-horizon tasks (as shown
in Fig. 4). Because our skill implementation is independent
of robot proprioception, this information is omitted for SEED
and MAPLE, enabling reduced state space.
Reaching is a simulation task in which the robot has

to move its gripper to the fixed area from a random starting
location. The state, s ∈ R4 represents the gripper position
in 3D and a binary state indicating the gripper status for all
algorithms. In this environment, we provide Reaching and
Gripper Release as available skills to skill-based algorithms;
however, the desired outcome is for the model to learn to
solely rely on the reaching primitive. This task is relatively
short-horizon, and is mainly a sanity check for our imple-
mentation of baseline algorithms since many of them have
zero performance in more challenging tasks described below.
Stacking is a simulation task in which the robot has

to stack a small block on top of a larger block. The initial
locations of both blocks and the robot are randomized. For
low-level baselines, the state space s ∈ R10 comprises 3D
positions of the gripper and blocks, as well as a binary state
indicating whether the gripper is closed. On the other hand,
MAPLE and SEED utilize a reduced state space s ∈ R6,
which includes 3D positions for both blocks. In this task,
Picking and Placing are available.
Sweeping is in the real world. The robot is required to

pick up a broom and sweep a toy into a dustpan. For SAC
and TAMER, the state space (s ∈ R10) includes the 3D
positions of the gripper and broom, 2D position of the toy,
the gripper state, and a flag indicating whether the broom is
being grasped. MAPLE and SEED’s state space omits the
gripper position and state. Available primitive skills for this
task include Picking and Pushing.
Collecting-Toy is in the real world. The robot is

tasked with picking up a toy, placing it in a drawer, and
pushing the drawer closed. For SAC and TAMER, the state
space (s ∈ R10) includes the 3D positions of the gripper
and toy, the gripper state, the delta value of the drawer’s
current position from the closed position, and flags indicating
whether the toy is being grasped and whether it is in the
drawer. MAPLE and SEED omit the gripper position and
state from their state space. Available primitive skills for
this task include Picking, Pushing, and Placing.

TABLE I
TRAINING HYPERPARAMETERS (SIM / REAL)

SAC TAMER MAPLE SEED
learning rate 3e-5 / - 3e-5 / 3e-4 3e-3 / 3e-3 3e-3 / 3e-3

batch size 256 / - 256 / 1024 256 / 1024 256 / 1024
γ (discount rate) 0.99 / - 0.99 / 0.99 0.99 / 0.4 0.99 / 0.4

gradient steps 5 / - 5 / 30 5 / 3 5 / 30
train frequency 1 / - 1 / 25 1 / 2 1 / 25

Cooking-Hotdog is in the real world. The task requires
the robot to perform a series of actions, including picking
up a skillet and placing it on a stove, placing a sausage on
the skillet, picking up the sausage again, and placing it in a
bun. In both SAC and TAMER, the state space (s ∈ R15)
contains 3D positions of the gripper, sausage, and skillet,
as well as flags indicating the gripper state and the status
of various steps in the task. However, the state space for
MAPLE and SEED does not include the gripper position or
state. Available skills for this task are Picking and Placing.

C. Hardware setup

The robot we use is a Franka Emika robot arm. The
experiment is run on a PC operating on Ubuntu 20.04 with
INTEL® Core i7-7700K CPU and NVIDIA® GTX 1080 Ti
graphics card. For object position estimation, two calibrated
INTEL® Realsense™Depth Camera D415 are used.

V. RESULTS

Evaluation metrics. The primary performance metric
utilized in our simulations is the task success rate, as the
algorithms can be trained until convergence. To measure the
task success rate, we conducted 100 evaluations throughout
the training process, each consisting of 10 rollouts.

In real-world scenarios, extensive evaluations prove to be
costly. As a result, we have adopted an approach wherein
we measure the number of successes over the course of
the training steps. This allows us to monitor the progress
of the algorithms in real-time without incurring signifi-
cant expenses. Furthermore, it is crucial to consider safety
concerns while evaluating the performance of robots. We
have identified two critical safety scenarios that need to be
monitored: a safety violation resulting in damage to the robot
or objects, and a safety violation leading to task failure. In
the former scenario, the emergency stop button is pressed;
in the latter case, a manual reset is required to restore
normalcy. The count of safety violations for each of the trials
is documented.

SEED is sample efficient. Simulation experiment results
are shown in Fig. 5 comparing the performance of several
RL algorithms on two different robotic manipulation tasks:
Reaching and Stacking. In the simple, short-horizon
task, Reaching, both TAMER and SEED algorithms ex-
hibit rapid learning which highlights the advantage of using
evaluative feedback. As expected, MAPLE and MAPLE-aff
algorithms demonstrate faster learning rates than the SAC
algorithm in this task. However, in the more complex and
challenging Stacking task, SEED outperforms all other



Fig. 4. Visualizations of real-world, long-horizon manipulation tasks with intermediate steps. Top row: Sweeping (1-3) and Collecting-Toy (4-7)
tasks; bottom row (8-14): Cooking-Hotdog, the task with the longest horizon.

Fig. 5. Average success rate over training steps (low-level steps, one low-
level action per step) for Reaching and Stacking in simulation. SEED
learns to solve the tasks more efficiently compared to the baselines. Error
bars indicate the standard error of the means (n = 5).

algorithms by a substantial margin. It is worth noting that
although MAPLE-aff may eventually learn the Stacking
task after four million steps, as reported in the original
research [5], SEED learns to solve the task in only 800,000
steps.

While the original work on MAPLE-aff demonstrated the
advantage of skill-based actions in sim2real transfer [5], this
approach is only applicable when a digital twin setting can
be prepared. However, this is not always possible, calling for
methods that allow the robot to train from scratch in the real

Fig. 6. Number of successes over training steps (high-level steps, one skill
per step) for the first goal in Cooking-Hotdog (picking up the skillet).
SEED learns to solve this subgoal more efficiently than MAPLE-aff.

world.
The first challenge in training MAPLE-aff from scratch

in real-world settings is the time-consuming process. To
overcome this challenge, the SEED algorithm employs eval-
uation without execution and relies on human feedback to
optimize training time, which is around ten times faster
than MAPLE-aff. The second challenge of training MAPLE-
aff is that physical robots pose a safety risk. Nonetheless,
to compare the performance of SEED and MAPLE-aff,
we conducted experiments using a simplified version of
the Cooking-Hotdog task, which involves only the first
subgoal of picking up the skillet. The results shown in
Fig. 6, indicate that on average, SEED can successfully
complete the subgoal nine times within 250 high-level steps,
while MAPLE-aff only succeeds once. Given the low success
rate of MAPLE-aff and safety concerns associated with
continuing the experiments, we did not run MAPLE-aff on
the entire task.

SEED ensures better safety. Table II presents the safety
violation ratio, which is given by the number of safety
violations divided by the total number of decision steps. Our



TABLE II
SAFETY VIOLATION RATIO.

TAMER MAPLE-aff SEED

Sweeping 0.25% 8.50% 1.11%
Collecting-Toys 0.26% 1.19% 0.40%
Cooking-Hotdog 0.49% 3.54% 0.51%

analysis reveals that SEED exhibits significantly lower safety
risks when compared to MAPLE-aff. The chance of safety
violation in MAPLE-aff is about 3 to 7 times compared to
SEED. The main reason is that SEED enables evaluation
without execution, which can prevent dangerous actions from
being executed. The findings of our study indicate that SEED
holds great promise in enhancing safety in robot learning, a
crucial consideration for real-world applications.

It is worth noting that in the case of TAMER, one decision
step is equivalent to one low-level step, whereas in MAPLE-
aff and SEED, one decision step corresponds to one primitive
skill step, which typically involves around 100 low-level
steps. Therefore the risk of TAMER is underestimated here
(and its performance is zero as shown in Fig. 7).

SEED significantly reduces human effort. Due to con-
cerns over the MAPLE-aff algorithm’s sample efficiency
and potential safety risks in a physical robot setting, we
opted to exclude it from the rest of real-world experiments.
Instead, we focused solely on training the TAMER and SEED
algorithms until task completion. We compare SEED and
TAMER based on the amount of human effort required in
real-world experiments. Figure 7 displays the results obtained
from providing both TAMER and SEED with the same
quantity of human feedback. Notably, SEED was able to
learn effectively within the given amount of feedback, while
TAMER failed to achieve any successful task completion.
Remarkably, for all three long-horizon tasks, SEED has suc-
cessfully learned to solve them. Additionally, human trainers
adapt quickly and learn how to provide better feedback for
the robots, as evidenced by the much better results observed
in the second trial compared to the first. Please refer to the
supplemental video for a detailed analysis of the learning
results.

VI. CONCLUSION

Real-world manipulation tasks that involve long horizons
present numerous challenges to robotic learning agents,
including safety guarantee and sample efficiency. In addition,
if human data are required, as in the case of RLHF, it is
essential to minimize the associated human effort. This work
presents SEED, an innovative approach that synergistically
integrates human evaluative feedback and primitive skills to
enhance the efficiency and safety of real-world reinforcement
learning. The proposed method overcomes the challenges
associated with real-world long-horizon manipulation tasks,
thereby paving the way for future research to scale up robot
learning with improved safety guarantees and affordable
human costs.

Fig. 7. Number of successes over the number of human feedback for three
real-world tasks. SEED learns to solve all tasks efficiently while TAMER
cannot. The experiments are terminated when the maximum number of steps
is reached or the agent has learned to solve the task consistently.
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